

TEDU MATH SEMINARS

Oscillations of Differential and Difference Equations with Several Deviating Arguments

Ioannis P. STAVROULAKIS

Department of Mathematics, University of Ioannina^{*} (*Currently Visiting Department of Mathematics, Ankara University)

Abstract:

Consider the first-order delay differential equation

$$x'(t) + \sum_{i=1}^{m} p_i(t) x(\tau_i(t)) = 0, \quad t \ge 0,$$

where, for every $i \in \{1, ..., m\}$, p_i is a continuous real-valued function in the interval $[0, \infty)$, and τ_i is a continuous real-valued function on $[0, \infty)$ such that

 $\tau_i(t) \leq t, \quad t \geq 0, \quad \text{and} \quad \lim_{t \to \infty} \tau_i(t) = \infty$

and the discrete analogue difference equation

$$\Delta x(n) + \sum_{i=1}^{m} p_i(n) x(\tau_i(n)) = 0, \quad n \in \mathbb{N}_0,$$

where $m \in \mathbb{N}$, p_i , $1 \leq i \leq m$, are real sequences and $\{\tau_i(n)\}_{n \in \mathbb{N}_0}$, $1 \leq i \leq m$, are sequences of integers such that

 $\tau_i(n) \le n-1, \quad n \in \mathbb{N}_0, \quad \text{and} \quad \lim_{n \to \infty} \tau_i(n) = \infty, \quad 1 \le i \le m$

Several optimal oscillation conditions for the above equations are presented.

DATE: 23.03.2017

TIME: 16:00

PLACE: TED University, A216